

LDR40K2 Laser Target Designator Technical Specification Document

Model:LDR40K2

₹ PRODUCT DESCRIPTION

The LDR40K2 laser target designator measures the distance to the target and can provide target laser designation for laser-guided applications in airborne fields with high reliability requirements. It features small size, light weight, long-range target designation, high precision, and strong environmental adaptability.

Main Functions

The laser rangefinder and target designator achieve the following control functions through a serial interface:

- 1) Capable of laser ranging and real-time reporting of distance values;
- 2) Protection against reverse polarity connection and overvoltage circuit protection;
- 3) Laser target designation at an internally set frequency of 20Hz;
- 4) Laser target designation at a frequency set by external commands;
- 5) Laser target designation triggered by an external synchronization signal (laser target designation in external synchronization mode), with precise encoding;
- 6) Capable of real-time reporting of the current working temperature for the host computer to judge and calculate;
- 7) Laser reception lockout function;
- 8) Over-temperature warning function: When the laser rangefinder and target designator's working temperature is too high to continue emitting laser, it should send an over-temperature warning status message to the host computer and protect the safety of the laser rangefinder and target designator;
- 9) Reporting the number of laser emissions;
- 10) Reserved software interface with energy adjustment function (when energy decreases, it can be adjusted through the software interface to ensure energy \geq 45mJ);

- 11) Reporting information includes pulse count number during ranging and laser target designation;
- 12) Self-check and output of fault codes.

Power-on self-check includes:

- RS422 serial communication status;
- High-temperature warning.

Startup and periodic self-checks include:

- RS422 serial communication status;
- High-temperature warning;
- Laser emission or no emission.

Note: Since the laser rangefinder/target designator can only detect charging/discharging and laser emission/no emission faults when emitting laser, the power-on self-check does not require detection of these two faults. The startup self-check and periodic self-check report the detection results from the last target designation or ranging.

Temperature warning output, expected target designator or ranging performance (standby status, temperature range - 40~60°C, operating status, -40~80°C).

₹ TECHNICAL SPECIFICATIONS

Parameter Specifications

1) Operating Modes: Ranging, Target Designation

2) Pump Source: Diode Array;

3) Operating Wavelength: 1.064µm;

4) Pulse Energy: ≥45mJ;

5) Pulse Energy Fluctuation: Within a target designation cycle, the fluctuation of single pulse energy does not exceed 10% of the average energy (statistic taken after 2 seconds of emission);

6) Beam Divergence: ≤0.5mrad;

7) Pulse Width: 15±5ns;

- 8) Laser Axis Stability: ≤0.05mrad;
- 9) Optical Axis Alignment Error Relative to Mounting Datum: Azimuth ≤0.5mrad, Elevation ≤0.25mrad;
- 10) Ranging Performance:
- a) Ranging Frequency: 1Hz/5Hz, single shot;
- b) Continuous ranging time at 1Hz is not less than 5 minutes, with a 1-minute rest;
- c) Continuous ranging time at 5Hz is not less than 1 minute, with a 1-minute rest;
- d) Minimum measurement distance: no more than 300m;
- e) Maximum measurement distance: no less than 5000m:
- f) Ranging Accuracy: ±2m;
- g) Probability of Ranging: no less than 98%;
- 11) Target Designation Performance:
- a) Laser Encoding Precision: 2.5 µs.
- b) Base Frequency for Laser Target Designation: 20Hz.
- c) Continuous Target Designation Time
- Short Cycle Target Designation:

A single target designation lasts no less than 20 seconds, with an interval no greater than 30 seconds, and continues for 10 cycles.

• Long Cycle Target Designation:

A single target designation lasts no less than 47 seconds, with a target designation restart interval no greater than 30 seconds, capable of continuous designation for 2 cycles.

After the completion of a target designation cycle, a 30-minute interval is required before restarting continuous target designation.

- 12) Laser Encoding:
- a) Complies with MIL-STD-810G requirements and has user self-encoding expansion capabilities;
- b) Capable of receiving external synchronization signals to control laser emission for encoding;
- c) Encoding Method: Precise frequency code (eight pre-stored cycle code encodings);
- 13) Dimensions and Weight:
- a) Outer dimensions envelope: ≤106mm×98mm×48mm;
- b) Weight: ≤450g.
- 14) Power Supply:
- a) The electrical and electronic components of the laser rangefinder and target designator should be compatible with the system power characteristics.
- b) Average power is no greater than 80W, and peak power is no greater than 100W.
- c) Input power is +26V±4VDC (voltage fluctuation range +22V to +30V). Reverse polarity protection is required for the input power.
- 15) Electrical Protection:

After the circuit board is designed and debugged, it should be coated with conformal coating for "three protections" treatment.

Environmental Adaptability Requirements

Temperature Requirements

1) High Temperature Requirements

Working temperature: +55°C, maintained for 2 hours;

Storage temperature range ≤+70°C.

2) Low Temperature Requirements

Working temperature: -40°C, maintained for 2 hours;

Storage temperature range \geq -45°C.

Vibration Requirements

Capable of withstanding flight vibrations and the impact of takeoff and landing, and all equipment can withstand the environmental conditions of automotive transportation.

Vibration is a swept spectrum, with 15Hz to 33Hz being equal displacement sine vibration, with a displacement of 0.91mm; 33Hz to 700Hz is equal acceleration sine vibration, with an acceleration of 2g.

Each direction vibrates for 1 hour.

Test Sample Condition: The product is placed on the test bench in normal use condition and powered on.

After the shock test, the product should work normally.

Shock Requirements

- Vertical axis direction $\geq 10g$,
- Transverse axis direction $\geq 10g$,
- Longitudinal axis direction $\geq 10g$;
- Ring sawtooth wave, duration 11ms, X, Y, Z axes, each axis in two directions, one time each, totaling 18 times.
- Test Sample Condition: The product is placed on the test bench in normal use condition and powered on.

• After the shock test, the product should work normally.

₹ STRUCTURAL DRAWING (mm)

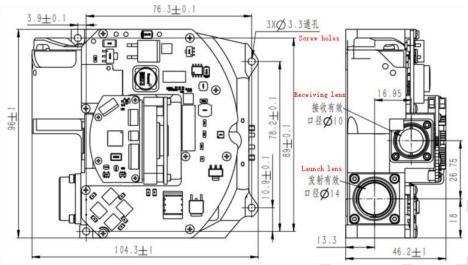


Figure 1 Mechanical Interface

₹ ELECTRICAL INTERFACE

The model of the laser rangefinder and target designator socket is J30J-15ZKL, and its corresponding plug is J30J-15TJP; the corresponding plug must be provided upon delivery. The electrical interface definition is shown in Table 1:

Table 1: Electrical Interface Definition

Pin	Signal Name	Remarks				
P-1	VIN+	26V±4V				
P-2	VIN+	26V±4V				
P-3	NC	External Sync Positive				
P-4	VDD	Software Program Input				
P-5	GND	Software Program Input				
P-6	ARM_SWCLK	Software Program Input				
P-7	ARM_SWDAT	Software Program Input				
P-8	NC	External Sync Negative				
P-9	GND	26V Ground				
P-10	GND	26V Ground				
P-11	RS422_TX+	Transmitter + for Rangefinder and Target Designator				
P-12	RS422_TX-	Transmitter - for Rangefinder and Target Designator				
P-13	RS422_RX-	Receiver - for Rangefinder and Target Designator				
P-14	RS422_RX+	Receiver + for Rangefinder and Target Designator				
P-15	GND	Signal Ground				

Note:

- The laser rangefinder/target designator has reverse polarity protection for the power supply.
- The contractor provides the plug.

REPORT NOT COLUMN PROTOCOL

RIT01

BITOO

1. Communication Standard

Asynchronous Serial Communication Standard: RS422 Serial Port

Baud Rate: 115200bps

Transmission Format: 8 data bits, 1 start bit, 1 stop bit, no parity bit

For each byte of information, the least significant bit (lsb) is transmitted first. For multi-byte information, the lower byte is transmitted first.

2. Output Information

Output information refers to commands sent by the host computer system to the Laser Rangefinder Target Designator module,

including:

BIT07

- \triangleright Information header (0x55);
- Command word 1;
- Command word 2;
- Command word 3;
- > "Information tail" is the checksum, which is the result of the XOR operation of bytes 1-4.

BIT05

The relevant definitions of command word 1 are as follows:

BIT06

Table 2 Command word 1 definition

DITU/	D1100	D1103	DITUT	D1103	D1102	DITUI	DITUU		
0x00: Standby									
0x01: Initiate self-test									
0x02: Single distance measurement									
0x03: Continuous distance measurement (1Hz)									
0x04: Continuo	0x04: Continuous distance measurement (5Hz)								
0x05: Short target designation (duration 18s, interval 10s, 8 cycles of target designation)									
0x06: Long target designation (duration 60s, interval 60s, 4 cycles of target designation)									
0x08: Stop distance measurement/ target designation									
0x09: Set gating value									
0x0A: Report cumulative laser pulse count									
$0x19 \sim 0x20$: Change laser encoding parameters $9 \sim 16$									

 $0x29 \sim 0x30$: Read laser encoding parameters $9 \sim 16$ The relevant definitions of command word 2 are as follows:

Table 3 Command word 2 definition

BIT07	BIT06	BIT05	BIT04	BIT03	BIT02	BIT01	BIT00	
When Laser t	arget designation	is active: Laser c	odes range from	1 ~ 16.				
When laser ra	inging is active: 1	- First target, 2 -	Last target.					
When setting	the gating value:	Low byte of dista	ance gating value	2.				
When modifying parameters for laser codes 9 to 16: Low byte of laser code, period × 100 (5000 represents 50ms, range of								
46ms ~ 56m	<mark>s</mark>).							

The relevant definitions of command word 3 are as follows:

Table 4 Command word 3 definition

Tuble 1 Communa word 3 definition								
BIT07	BIT06	BIT05	BIT04	BIT03	BIT02	BIT01	BIT00	

When setting Laser Target Designation: Set Laser Target Designation time $(1 \sim 25)$.

When setting the gating value: High byte of distance gating value.

When modifying parameters for laser codes 9 ~ 16: High byte of laser code, period × 100 (5000 represents 50ms, range of

46ms ~ 56ms).

3.Input Information

Input information refers to the status information received by the Upper Computer from the Laser Target Designation module, including:

- \triangleright Information header (0x55);
- Status word;
- > Target distance/accumulated laser pulse count (2 bytes); low byte first, high byte second;
- For laser codes 9 to 16 parameters, period × 100 (5000 represents 50ms, range of 46ms to 56ms); low byte first, high byte second:
- Current temperature of the Laser Target Designation module;
- Information tail" is the checksum, which is the XOR result of bytes 1 to 5.

The relevant definitions of the status word information are shown in Table 5:

Table 5: Definitions of Status Word Information

BIT07	BIT06	BIT05	BIT04	BIT03	BIT02	BIT01	BIT00
0: No laser	0: Ranging effective	Laser marker	1: Over-temperature alarm		0: None	00: Standby	
1: Laser present	1: Ranging	alternating	0: Temperature normal		1: External	01: Ranging	
	ineffective	between 1 / 0			trigger	02: Indicating	

Definition of target distance information: The distance value is represented by 2 bytes (16 BIT) as an integer, which can be directly converted to a decimal number.

In standby mode, a self-check status is returned every 10S cycle. In ranging and Target Designator modes, the status is returned based on the laser frequency.

Definition of cumulative laser pulse count: Since a 16-bit binary number represents a range of $0 \sim 65535$, and the service life of the

laser rangefinder is 1 million times, it is agreed that the laser emission count is a multiple of 20, with a range of $0 \sim 1310700$.

Current temperature of the Laser Rangefinder Target Designator module: d7-d0: represented in two's complement, with a range of -128 ~ +127, in units of °C (degrees Celsius).

Notes:

- A status feedback frame is automatically returned every 10 seconds, meaning that a status frame is fed back every 10s during power-on, standby, stop ranging, and stop Target Designator states.
- > The device automatically stops ranging after 5 minutes of ranging at 1Hz and 1 minute of ranging at 5Hz (both are 300 rangings).
- After changing the encoding settings, the parameters are saved in the flash memory and will not be lost when the power is turned off and back on.
- ▶ BIT05 in Table 5 indicates 1/O alternating, which means that the feedback data has been updated.
- Each activation of Target Designator involves a continuous Target Designator cycle, which stops automatically upon completion. Therefore, the encoding only involves the laser pulse interval, and the Target Designator time parameter (1 ~ 60s) is included when initiating Target Designator.
- When sending short/long Target Designator commands, the Target Designator cycle is selected from encodings 1 ~ 16, with the

Target Designator period set by encodings 9 ~ 16.